Part Number Hot Search : 
FDB6030L HU20020 LT465A K3446 A1593 SR7010 SL1024B MS2209
Product Description
Full Text Search
 

To Download ADL5350-EVAL Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  lf to 4 ghz high linearity y-mixer preliminary technical data adl5350 rev. prc information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. specifications subject to change without notice. no license is granted by implication or otherwise under any patent or patent rights of analog devices. trademarks and registered trademarks are the property of their respective owners. one technology way, p.o. box 9106, norwood, ma 02062-9106, u.s.a. tel: 781.329.4700 www.analog.com fax: 781.461.3113 ? 2005 analog devices, inc. all rights reserved. features broadband rf, if, and lo ports conversion loss: 6 db noise figure: 6 db high input ip3: 26 dbm high input p 1db : 17 dbm low lo drive level single-ended design: no need for baluns single-supply operation: 3 v @ 10 ma miniature 8-lead 3 mm x 2 mm lfcsp package rohs compliant applications cellular base station point-to-point radio links rf instrumentation functional block diagram 05615-001 rf input or output if output o r input 3v rf if gnd gnd lo lo input vpos gc adl5350 figure 1. general description the adl5350 is a high linearity, up-and-down converting mixer capable of operating over a broad input frequency range. it is well suited for demanding cellular base-station mixer designs that require high sensitivity and efficient blocker immunity. based on a gaas phemt single-ended mixer architecture, the adl5350 provides excellent input linearity and low noise figure without the need for a high power level, local oscillator (lo) drive. in 850 mhz/900 mhz receive applications, the adl5350 provides a typical conversion loss of only 6 db. the integrated lo amplifier allows a low lo drive level, typically only 4 dbm for most applications. the input ip3 is typically greater than 25 dbm, with an input compression point of 17 dbm. the high input linearity of the adl5350 makes the device an excellent mixer for communications systems that require high blocker immunity, such as gsm 850/900 and 800 mhz cdma2000. at 2 ghz, a slightly greater supply current is required to obtain similar performance. for low frequency applications, the adl5350 provides access to the gate contact of the output-mixing device. this allows an external lo coupling capacitor to be applied between the vpos pin and gc pin, helping to improve the lo drive to the switching device. using a single 100 pf capacitor allows high performance at the lower lo frequencies. the single-ended broadband rf/if port allows the device to be customized for a desired band of operation using simple external filter networks. the lo to rf isolation is based on the lo rejection of the rf port filter network. greater isolation may be achieved using higher order filter networks as described in the applications section of this data sheet. the adl5350 is fabricated on a gaas phemt high performance ic process. the adl5350 is available in a 3 mm 2 mm 8-lead lfcsp package. it operates over a ? 40c to +85c temperature range. an evaluation board is also available.
adl5350 preliminary technical data rev. prc | page 2 of 24 table of contents features .............................................................................................. 1 applications....................................................................................... 1 functional block diagram .............................................................. 1 general description ......................................................................... 1 specifications..................................................................................... 3 820 mhz receive performance .................................................. 3 1950 mhz receive performance ................................................ 3 spur tables......................................................................................... 4 450 mhz spur table..................................................................... 4 820 mhz spur table..................................................................... 4 1950 mhz spur table................................................................... 5 absolute maximum ratings............................................................ 6 esd caution.................................................................................. 6 pin configuration and function descriptions............................. 7 typical performance characteristics ..............................................8 820 mhz characteristics..............................................................8 1950 mhz characteristics......................................................... 13 functional description.................................................................. 18 circuit description .................................................................... 18 implementation procedure ....................................................... 18 applications..................................................................................... 20 low frequency applications .................................................... 20 70 mhz receive performance .................................................. 21 high frequency applications ................................................... 22 evaluation board ............................................................................ 23 outline dimensions ....................................................................... 24 ordering guide .......................................................................... 24
preliminary technical data adl5350 prc | page 3 of 24 specifications 820 mhz receive performance v s = 3 v, t a = 25c, lo power = 4 dbm, re: 50 , unless otherwise noted. table 1. parameter min typ max unit conditions rf frequency range 750 850 975 mhz lo frequency range 500 780 945 mhz low side lo if frequency range 30 70 250 mhz conversion loss 6.3 db f rf = 820 mhz, f lo = 750 mhz, f if = 70 mhz ssb noise figure 5.6 db f rf = 820 mhz, f lo = 750 mhz, f if = 70 mhz input third-order intercept 27.6 dbm f rf1 = 819 mhz, f rf2 = 821 mhz, f lo = 750 mhz f if = 70 mhz, each rf tone 0 dbm input 1 db compression point 17.8 dbm f rf = 820 mhz, f lo = 750 mhz, f if = 70 mhz lo to if leakage ?28 dbc lo power = 4 dbm, f rf = 820 mhz, f lo = 750 mhz lo to rf leakage ?16 dbc lo power = 4 dbm, f rf = 820 mhz, f lo = 750 mhz rf to if leakage ?17 dbc rf power = 0 dbm, f rf = 820 mhz, f lo = 750 mhz if/2 spurious ?50 dbc rf power = 0 dbm, f rf = 820 mhz, f lo = 750 mhz supply voltage 2.7 3 5.5 v supply current 10 ma lo power = 4 dbm 1950 mhz receive performance v s = 3 v, t a = 25c, lo power = 6 dbm, re: 50 , unless otherwise noted. table 2. parameter min typ max unit conditions rf frequency range 1800 1950 2050 mhz lo frequency range 1420 1760 2000 mhz low side lo if frequency range 50 190 380 mhz conversion loss 7.2 db f rf = 1950 mhz, f lo = 1760 mhz, f if =190 mhz ssb noise figure 6.8 db f rf = 1950 mhz, f lo = 1760 mhz, f if =190 mhz input third-order intercept 26.6 dbm f rf1 = 1949 mhz, f rf2 = 1951 mhz, f lo = 1760 mhz f if = 190 mhz, each rf tone 0 dbm input 1 db compression point 16 dbm f rf = 1950 mhz, f lo = 1760 mhz, f if =190 mhz lo to if leakage ?12.5 dbc lo power = 6 dbm, f rf = 1950 mhz, f lo = 1760 mhz lo to rf leakage ?10.5 dbc lo power = 6 dbm, f rf = 1950 mhz, f lo = 1760 mhz rf to if leakage ?10 dbc rf power = 0 dbm, f rf = 1950 mhz, f lo = 1760 mhz if/2 spurious ?54 dbc rf power = 0 dbm, f rf = 1950 mhz, f lo = 1760 mhz supply voltage 2.7 3 5.5 v supply current 24 ma lo power = 6 dbm
adl5350 preliminary technical data prc | page 4 of 24 spur tables all spur tables are n f rf ? m f lo -mixer spurious products for 0 dbm input power, unless otherwise noted. 450 mhz spur table table 3. m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 ?5.7 ?16.2 ?25.5 ?16.2 ?23.9 ?22.3 ?27.1 ?24.7 ?27.1 ?26.8 ?38.6 ?30.2 ?29.9 ?27.2 ?29.2 ?34.8 1 ?24.9 ?5.7 ?30.1 ?18.8 ?25.2 ?24.0 ?24.3 ?37.1 ?26.5 ?53.1 ?32.0 ?44.0 ?59.3 ?46.0 ?52.3 ?43.3 2 ?47.4 ?57.5 ?51.1 ?60.2 ?53.8 ?55.2 ?52.5 ?50.8 ?57.7 ?51.4 ?65.0 ?53.1 ?63.9 ?77.5 ?68.7 ?75.5 3 ?70.5 ?75.3 ?70.2 ?79.7 ?69.5 ?76.6 ?66.9 ?74.5 ?73.0 ?74.7 ?75.5 ?71.4 ?74.6 ?75.3 ?75.6 ?76.1 4 ?78.4 ?73.1 ?82.4 ?79.3 ?79.5 ?77.5 ?84.5 ?77.8 ?82.2 ?77.6 ?88.4 ?82.7 ?77.9 ?72.8 ?77.1 ?83.6 5 ?82.7 ?76.6 ?77.1 ?89.8 ?77.6 ?76.1 ?79.3 ?79.3 ?83.1 ?81.1 ?78.4 ?79.6 ?80.2 ?77.9 ?85.6 ?79.1 6 ?90.6 ?79.2 ?82.2 ?84.3 ?81.2 ?96.3 ?75.8 ?80.1 ?80.7 ?76.9 ?82.5 ?74.4 ?84.0 ?88.9 ?89.6 ?77.9 n 7 ?78.9 ?74.4 ?77.0 ?83.2 ?80.1 ?86.3 ?78.9 ?87.2 ?76.5 ?81.5 ?82.8 ?83.6 ?88.7 ?73.5 ?78.3 ?78.4 8 ?77.3 ?73.6 ?79.0 ?80.4 ?78.6 ?79.6 ?83.3 ?81.0 ?77.4 ?70.4 ?77.0 ?79.7 ?90.7 ?78.0 ?76.2 ?77.0 9 ?80.8 ?78.5 ?76.7 ?78.7 ?84.8 ?80.4 ?81.1 ?76.9 ?80.7 ?79.6 ?76.0 ?91.3 ?90.5 ?91.4 ?96.8 ?75.7 10 ?78.9 ?77.1 ?77.0 ?84.0 ?87.0 ?81.2 ?84.4 ?90.2 ?75.8 ?77.5 ?90.4 ?82.8 ?83.0 ?87.9 ?81.9 ?83.1 11 ?77.5 ?80.4 ?78.7 ?86.7 ?79.1 ?76.4 ?85.9 ?78.7 ?83.4 ?85.2 ?78.6 ?92.3 ?80.3 ?75.7 ?78.3 ?75.4 12 ?81.3 ?81.6 ?81.3 ?76.8 ?81.5 ?78.5 ?78.5 ?89.7 ?74.4 ?73.3 ?77.0 ?78.5 ?75.2 ?75.4 ?91.3 ?90.7 13 ?79.9 ?81.3 ?77.4 ?78.7 ?79.7 ?76.7 ?77.7 ?85.8 ?77.0 ?78.9 ?84.5 ?75.0 ?81.0 ?78.6 ?75.8 ?82.0 14 ?82.7 ?77.6 ?79.6 ?76.3 ?82.3 ?79.8 ?79.2 ?83.5 ?83.5 ?91.4 ?78.9 ?102.8 ?75.6 ?80.2 ?79.5 ?87.4 15 ?79.7 ?82.9 ?79.6 ?75.7 ?78.8 ?78.6 ?78.7 ?79.8 ?77.7 ?78.4 ?78.7 ?80.6 ?79.0 ?80.4 ?87.0 ?80.3 820 mhz spur table table 4. m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 ?6.22 ?14.7 ?12.8 ?13.3 ?14.2 ?30.1 ?27.1 ?20.4 ?20.2 ?22.1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 1 ?18.8 ?6.22 ?33 ?20.3 ?21.4 ?44.5 ?38.5 ?43.1 ?39 ?31.3 ?33.1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 2 ?44.6 ?71.6 ?50 ?64.8 ?51.7 ?53.7 ?60.1 ?64.3 ?74.8 ?61.5 ?56.8 ?55.1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 3 ?73.4 ?76.8 ?69.8 ?72.8 ?75.5 ?79.6 ?97.5 ?72.3 ?79.5 ?84.4 ?77.8 ?74.9 ?74.5 n.m. 1 n.m. 1 n.m. 1 4 ?78.2 ?77.8 ?85.8 ?91.3 ?80.8 ?78.2 ?80.9 ?76.1 ?80.3 ?79.4 ?81.1 ?79.3 ?78.1 ?77.6 n.m. 1 n.m. 1 5 ?82.1 ?80.8 ?85.2 ?81.4 ?87.1 ?79.5 ?84.7 ?108 ?90.2 ?84.5 ?76.4 ?75.1 ?80.9 ?78.8 ?83.3 n.m. 1 6 ?77.6 ?78.6 ?80.6 ?78.3 ?83.2 ?70.8 ?77.5 ?86.8 ?84.9 ?81.7 ?76.7 ?81 ?79.4 ?78.6 ?77.1 ?79.5 n 7 ?80.2 ?76.6 ?83.1 ?75.8 ?82.4 ?78.2 ?78.7 ?80.7 ?83 ?76.5 ?88.9 ?77.7 ?77.3 ?80.2 ?78.9 ?78.1 8 ?83.5 ?80.6 ?81.7 ?79 ?84.1 ?78.4 ?79.5 ?86.3 ?79 ?76.1 ?86.7 ?79.5 ?88.8 ?73.9 ?79.7 ?77.4 9 n.m. 1 ?78.7 ?76.3 ?78.1 ?82.6 ?78.2 ?78.5 ?87.7 ?82.1 ?76.7 ?94.1 ?81.2 ?87.5 ?80.3 ?81.9 ?74.9 10 n.m. 1 n.m. 1 ?78.7 ?78.4 ?80.8 ?75.4 ?76.6 ?86 ?84 ?81.2 ?75.5 ?72.5 ?78.1 ?77.1 ?81.8 ?78.5 11 n.m. 1 n.m. 1 n.m. 1 ?79 ?76.7 ?81.5 ?79.1 ?78.2 ?76.1 ?83 ?75 ?77.8 ?84.1 ?79.1 ?79.1 ?84.2 12 n.m. 1 n.m. 1 n.m. 1 n.m. 1 ?76.4 ?78.8 ?77 ?79.4 ?81.8 ?78.6 ?82.8 ?79.3 ?76.8 ?75.8 ?82.2 ?81.2 13 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 ?82 ?77.7 ?80.8 ?79.8 ?76.6 ?79.3 ?82.1 ?94.9 ?74.6 ?83.3 ?75.9 14 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 ?84.2 ?78 ?81.7 ?80.3 ?79.3 ?77.7 ?75.8 ?86.9 ?77.3 ?77 15 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 ?77 ?79.5 ?82.2 ?80.7 ?75.3 ?76.1 ?79.7 ?78.6 1 n.m. indicates that a frequency was not me asured. n.m. spurs are either less than ? 100 dbm or correspond to a frequency greate r than 5995 mhz.
preliminary technical data adl5350 prc | page 5 of 24 1950 mhz spur table table 5. m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 ?7.8 ?2.08 ?16.6 ?31.7 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 1 ?9.6 ?7.81 ?36.2 ?27.2 ?41.1 ?28 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 2 ?54.7 ?74.9 ?54 ?62 ?58.5 ?78.6 ?57.2 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 3 ?81.1 ?78.6 ?78.7 ?85.4 ?82.1 ?75.6 ?79.6 ?79.4 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 4 n.m. 1 ?78 ?83.8 ?86.4 ?84.1 ?79.2 ?77.5 ?77.2 ?81.9 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 5 n.m. 1 n.m. 1 ?73.9 ?82.8 ?82.3 ?87.8 ?80.1 ?74.7 ?79.3 ?82.1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 6 n.m. 1 n.m. 1 n.m. 1 ?80.1 ?82.1 ?86.7 ?83.4 ?80.7 ?88.2 ?79.5 ?86.3 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 7 n.m. 1 n.m. 1 n.m. 1 n.m. 1 ?79 ?80.6 ?80 ?76.5 ?81.4 ?81.8 ?75.2 ?77.4 n.m. 1 n.m. 1 n.m. 1 n.m. 1 8 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 ?79.6 ?83.2 ?81.5 ?81.5 ?85.5 ?80.9 ?79.3 ?79.5 n.m. 1 n.m. 1 n.m. 1 9 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 ?83.7 ?89 ?83.1 ?79.7 ?80.6 ?81 ?82.9 ?78.7 n.m. 1 n.m. 1 10 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 ?80.9 ?76.4 ?82.7 ?79.2 ?78.8 ?77.9 ?80.7 ?79.6 11 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 ?77.8 ?81.8 ?79.7 ?88.3 ?73.9 ?80.9 ?79.5 12 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 ?79.6 ?78.7 ?77.6 ?87.1 ?86.6 ?76.7 13 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 ?74.4 ?81.6 ?83 ?82.9 ?80.7 14 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 ?78.9 ?82 ?74.6 ?80.4 15 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 n.m. 1 ?78.7 ?73.1 ?78.1 1 n.m. indicates that a frequency was not me asured. n.m. spurs are either less than ? 100 dbm or correspond to a frequency greate r than 5995 mhz.
adl5350 preliminary technical data prc | page 6 of 24 absolute maximum ratings table 6. parameter rating supply voltage, v s 6.0 v rf input level 20 dbm lo input level 20 dbm internal power dissipation 324 mw ja 154.3 c/w maximum junction temperature 135c operating temperature range ?40c to +85c storage temperature range ?65c to +150c stresses above those listed under absolute maximum ratings may cause permanent damage to the device. this is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. esd caution esd (electrostatic discharge) sensitive device. electrosta tic charges as high as 4000 v readily accumulate on the human body and test equipment and can discharge with out detection. although this product features proprietary esd protection circuitry, permanent dama ge may occur on devices subjected to high energy electrostatic discharges. therefore, proper esd precautions are recommended to avoid performance degradation or loss of functionality.
preliminary technical data adl5350 prc | page 7 of 24 pin configuration and fu nction descriptions 0 5615-002 1 rf/if 2 gnd2 3 loin 4 gnd1 8 rf/if 7gc 6vpos 5 gnd1 adl5350 top view (not to scale) figure 2. pin configuration table 7. pin function descriptions pin no. mnemonic function 1, 8 rf/if rf and if input/output ports. these nodes are internally tied together. rf and if port separation is achieved using external tuning networks. 2 gnd2 device common (dc ground) for rfif switching circuitry. 3 loin lo input, ac-coupled. 4, 5 gnd1 device common (dc ground) for lo buffer circuitry. 6 vpos positive supply voltage for the drain of the lo buffer. a se ries rf choke is needed on the supply line to provide proper ac-loading of the lo buffer amplifier. 7 gc gate contact of mixing device. typically not connected for high frequency mixing. connecting capacitor between gc and vpos permits low frequency applications.
adl5350 preliminary technical data rev. prc | page 8 of 24 typical performance characteristics 820 mhz characteristics v pos = 3 v, rf frequency = 820 mhz, if frequency = 70 mhz, rf level = ?10 dbm, lo level = 4 dbm, temperature = 25c, unless otherwise noted. 15 14 13 12 11 10 9 8 7 6 5 ?40 ?20 0 20 40 60 80 05615-003 supply current (ma) temperature (c) figure 3. current vs. temperature 10 2 3 4 5 6 7 8 9 ?40 ?20 0 20 40 60 80 05615-004 conversion loss (db) temperature (c) figure 4. conversion loss vs. temperature 30 29 28 20 21 22 23 24 25 26 27 ?40 ?20 0 20 40 60 80 05615-005 input ip3 (dbm) temperature (c) figure 5. iip3 vs. temperature 22 21 20 12 13 14 15 16 17 18 19 ?40 ?20 0 20 40 60 80 05615-006 input p1db (dbm) temperature (c) figure 6. input compression vs. temperature 14 0 2 4 6 8 10 12 2.73.23.74.24.75.2 05615-007 supply current (ma) supply voltage (v) ?40c +25c +85c figure 7. current vs. vpos 7.4 6.0 6.2 6.4 6.6 6.8 7.0 7.2 2.73.23.74.24.75.2 05615-008 conversion loss (db) supply voltage (v) ?40c +25c +85c figure 8. conversion loss vs. vpos
preliminary technical data adl5350 prc | page 9 of 24 820 mhz characteristics 29.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 2.73.23.74.24.75.2 05615-009 input ip3 (dbm) supply voltage (v) ?40c +25c +85c figure 9. iip3 vs. vpos 20 10 11 12 13 14 15 16 17 18 19 2.73.23.74.24.75.2 05615-010 input p1db (dbm) supply voltage (v) ?40c +25c +85c figure 10. input compression vs. vpos 12 0 4 2 6 8 10 2.7 3.0 3.5 4.0 4.5 5.5 5.0 05615-011 noise figure (db) supply voltage (v) figure 11. noise figure vs. vpos 16 14 12 10 8 6 4 2 0 750 800 850 900 950 05615-012 supply current (ma) rf frequency (mhz) ?40c +25c +85c figure 12. current vs. rf frequency 10 9 8 7 6 5 4 3 2 1 0 750 800 850 900 950 05615-013 conversion loss (db) rf frequency (mhz) ?40c +25c +85c figure 13. conversion loss vs. rf frequency 34 32 30 28 26 24 22 20 750 800 850 900 950 05615-014 input ip3 (dbm) rf frequency (mhz) ?40c +25c +85c figure 14. iip3 vs. rf frequency
adl5350 preliminary technical data rev. prc | page 10 of 24 820 mhz characteristics 22 15 16 17 18 19 20 21 750 800 850 900 950 05615-015 input p1db (dbm) rf frequency (mhz) ?40c +25c +85c figure 15. input compression vs. rf frequency 9 8 7 6 5 4 3 2 1 0 700 750 800 850 900 950 1000 05615-016 noise figure (db) rf frequency (mhz) figure 16. noise figure vs. rf frequency 16 14 12 10 8 6 4 2 0 30 80 130 180 230 05615-017 supply current (ma) if frequency (mhz) +85c ?40c +25c figure 17. current vs. if frequency 9 8 6 7 4 5 3 2 1 0 30 80 130 180 230 05615-018 conversion loss (db) if frequency (mhz) +85c ?40c +25c figure 18. conversion loss vs. if frequency 32 31 29 30 28 27 26 30 80 130 180 230 05615-019 input ip3 (dbm) if frequency (mhz) +85c ?40c +25c figure 19. iip3 vs. if frequency 22 21 20 19 18 17 16 15 30 50 150 100 200 250 05615-020 input p1db (dbm) if frequency (mhz) +85c +25c ?40c figure 20. input compression vs. if frequency
preliminary technical data adl5350 prc | page 11 of 24 820 mhz characteristics 8 7 6 5 4 3 2 1 0 50 380 350 300 250 200 150 100 05615-021 noise figure (db) if frequency (mhz) figure 21. noise figu re vs. if frequency 70 60 50 40 30 20 10 0 ?5?3?13579111315 05615-022 supply current (ma) lo level (dbm) figure 22. current vs. lo level 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 ?5?3?13579111315 05615-023 conversion loss (db) lo level (dbm) ?40c +25c +85c figure 23. conversion loss vs. lo level 30 29 28 27 26 25 24 23 22 21 20 ?5 ?3 ?1 3 1 5 7 9 11 13 15 05615-024 input ip3 (dbm) lo level (dbm) figure 24. iip3 vs. lo level 22 21 20 19 18 17 16 15 ?5 ?3 ?1 3 1 5 7 9 11 13 15 05615-025 input p1db (dbm) lo level (dbm) figure 25. input compression vs. lo level 12 10 8 6 4 2 0 ?6 ?4 ?2 0 2 4 10 8 6 05615-026 noise figure (db) lo level (dbm) v pos = 5v v pos = 3v figure 26. noise fi gure vs. lo level
adl5350 preliminary technical data rev. prc | page 12 of 24 820 mhz characteristics 0 ?5 ?10 ?15 ?20 ?25 ?30 700 750 800 850 900 950 1000 05615-027 rf feedthrough (dbc) rf frequency (mhz) figure 27. rf to if feedthrough vs. rf frequency 0 ?5 ?10 ?15 ?20 ?25 ?40 ?30 ?35 630 680 730 780 830 880 930 05615-028 lo feedthrough (dbc) lo frequency (mhz) figure 28. lo to if feedthrough vs. lo frequency 0 ?2 ?6 ?4 ?8 ?10 ?12 ?14 ?20 ?16 ?18 630 680 730 780 830 880 930 05615-029 lo leakage (dbc) lo frequency (mhz) figure 29. lo to rf leakage vs. lo frequency
preliminary technical data adl5350 prc | page 13 of 24 1950 mhz characteristics v pos = 3 v, rf frequency = 1950 mhz, if frequency = 190 mhz, rf level = ?10 dbm, lo level = 6 dbm, temperature = 25c, unless otherwise noted. 25 20 15 10 0 5 ?40 ?20 0 20 40 60 80 05615-030 supply current (ma) temperature (c) figure 30. current vs. temperature 10 9 8 7 6 5 4 3 2 1 0 ?40 ?20 0 20 40 60 80 05615-031 conversion loss (db) temperature (c) figure 31. conversion loss vs. temperature 30 29 28 27 26 25 24 23 22 21 20 ?40 ?20 0 20 40 60 80 05615-032 input ip3 (dbm) temperature (c) figure 32. iip3 vs. temperature 20 18 16 14 12 10 8 6 4 2 0 ?40 ?20 0 20 40 60 80 05615-033 input p1db (dbm) temperature (c) figure 33. input compression vs. temperature 45 40 35 30 25 20 15 10 5 0 2.7 3.2 3.7 4.2 4.7 5.2 05615-034 supply current (ma) supply voltage (v) ?40c +25c +85c figure 34. current vs. vpos 0 ?2 ?4 ?6 ?8 ?10 ?12 2.7 3.2 3.7 4.2 4.7 5.2 05615-035 conversion loss (db) supply voltage (v) ?40c +25c +85c figure 35. conversion loss vs. vpos
adl5350 preliminary technical data rev. prc | page 14 of 24 1950 mhz characteristics 34 32 30 28 26 24 22 20 2.7 3.2 3.7 4.2 4.7 5.2 05615-036 input ip3 (dbm) supply voltage (v) ?40c +25c +85c figure 36. iip3 vs. vpos 20 18 16 14 12 10 8 6 4 2 0 2.7 3.2 3.7 4.2 4.7 5.2 05615-037 input p1db (dbm) supply voltage (v) ?40c +25c +85c figure 37. input compression vs. vpos 14 12 10 8 6 4 2 0 2.7 3.0 5.5 4.5 5.0 4.0 3.5 05615-038 noise figure (db) supply voltage (v) figure 38. noise figure vs. vpos 35 30 25 20 15 10 5 0 1800 1850 1900 1950 2000 2050 05615-039 supply current (ma) rf frequency (mhz) ?40c +25c +85c figure 39. current vs. rf frequency 12 10 8 6 4 2 0 1800 1850 1900 1950 2000 2050 ?40c +25c +85c 05615-040 conversion loss (db) rf frequency (mhz) figure 40. conversion loss vs. rf frequency 34 30 32 28 26 24 22 20 1800 1850 1900 1950 2000 2050 ?40c +25c +85c 05615-041 input ip3 (dbm) rf frequency (mhz) figure 41. iip3 vs. rf frequency
preliminary technical data adl5350 prc | page 15 of 24 1950 mhz characteristics 20 0 2 4 6 8 10 12 14 16 18 1800 1850 1900 1950 2000 2050 05615-042 input p1db (dbm) rf frequency (mhz) ?40c +25c +85c figure 42. input compression vs. rf frequency 14 0 2 4 6 8 10 12 2.7 3.0 3.5 4.0 4.5 5.0 5.5 05615-043 noise figure (db) rf frequency (mhz) figure 43. noise figure vs. rf frequency 35 0 5 10 15 20 25 30 50 100 150 200 250 300 350 05615-044 supply current (ma) if frequency (mhz) ?40c +25c +85c figure 44. current vs. if frequency 12 0 2 4 6 8 10 50 100 150 200 250 300 350 05615-045 conversion loss (db) if frequency (mhz) ?40c +25c +85c figure 45. conversion loss vs. if frequency 34 32 30 28 26 24 22 20 50 100 150 200 250 300 350 05615-046 input ip3 (dbm) if frequency (mhz) ?40c +25c +85c figure 46. iip3 vs. if frequency 20 0 2 4 6 8 10 12 14 16 18 50 100 150 200 250 300 350 05615-047 input p1db (dbm) if frequency (mhz) ?40c +25c +85c figure 47. input compression vs. if frequency
adl5350 preliminary technical data rev. prc | page 16 of 24 1950 mhz characteristics 20 0 2 4 6 8 10 12 14 16 18 50 100 150 200 250 300 350 380 05615-048 noise figure (db) if frequency (mhz) figure 48. noise figu re vs. if frequency 70 60 50 40 30 20 10 0 ?5?3?113579111315 05615-049 supply current (ma) lo level (dbm) figure 49. current vs. lo level 10 9 8 7 6 5 4 3 2 1 0 ?5 15 10 5 0 05615-050 conversion loss (db) lo level (dbm) figure 50. conversion loss vs. lo level 28 26 24 22 20 18 16 14 12 10 ?5?3?113579111315 05615-051 input ip3 (dbm) lo level (dbm) figure 51. iip3 vs. lo level 20 18 16 14 12 10 8 6 4 2 0 ?5?3?113579111315 05615-052 input p1db (dbm) lo level (dbm) figure 52. input compression vs. lo level 18 16 14 12 10 8 6 4 2 0 ?6?4?20246810 05615-053 noise figure (db) lo level (dbm) v pos = 3v v pos = 5v figure 53. noise fi gure vs. lo level
preliminary technical data adl5350 prc | page 17 of 24 1950 mhz characteristics 0 ?5 ?10 ?15 ?20 ?25 1750 1800 1850 1900 1950 2000 2050 2100 2150 05615-054 rf feedthrough (dbc) rf frequency (mhz) figure 54. rf to if feedthrough vs. rf frequency 0 ?18 ?16 ?14 ?12 ?10 ?8 ?6 ?4 ?2 1560 1610 1660 1710 1760 1810 1860 1910 1960 05615-055 lo feedthrough (dbc) lo frequency (mhz) figure 55. lo to if feedthrough vs. lo frequency 0 ?14 ?12 ?10 ?8 ?6 ?4 ?2 1560 1610 1660 1710 1760 1810 1860 1910 1960 05615-056 lo leakage (dbc) lo frequency (mhz) figure 56. lo to rf leakage vs. lo frequency
adl5350 preliminary technical data rev. prc | page 18 of 24 functional description circuit description the adl5350 is a gaas mesfet, single-ended passive mixer with an integrated lo buffer amplifier. the device relies on the varying drain to source channel conductance of a fet junction to modulate an rf signal. a simplified schematic is shown in figure 57. 05615-057 rf gnd gnd lo lo input vpos v s gc rf input or output if if output or input figure 57. simpli fied schematic the lo signal is applied to the gate contact of a fet-based buffer amplifier. the buffer amplifier provides sufficient gain of the lo signal to drive the resistive switch. additionally, feedback circuitry provides the necessary bias to the fet buffer amplifier and rf/if ports to achieve optimum modulation efficiency for common cellular frequencies. the gc node is the gate-contact of the rf/if port resistive switch. the gc node enables external control of the bias level of the switching fet, allowing the user to override the internal bias generation circuitry, and allow further optimization of the mixers dynamic performance at frequencies outside of the 800 mhz to 2000 mhz band. the mixing of rf and lo signals is achieved by switching the channel conductance from the rf/if port to ground at the rate of the lo. the rf signal is passed through an external band- pass network to help reject image bands and reduce the broadband noise presented to the mixer. the band-limited rf signal is presented to the time-varying load of the rf/if port, which causes the envelope of the rf signal to be amplitude modulated at the rate of the lo. a filter network applied to the if port is necessary to reject the rf signal and pass the wanted mixing product. in a down-conversion application, the if filter network is designed to pass the difference frequency and present an open circuit to the incident rf frequency. similarly, for an up-conversion application, the filter is designed to pass the sum frequency and reject the incident rf. as a result, the frequency response of the mixer is determined by the response characteristics of the external rf/if filter networks. implementation procedure the adl5350 is a simple single-ended mixer that relies on off- chip circuitry to achieve effective rf dynamic performance. the following steps should be followed to achieve optimum performance (see figure 58 for component designations): 05615-058 rf/if gnd2 loin gnd1 rf/if gc vpos l4 c4 c2 l2 c6 c1 lo c3 l3 l1 rf v s if gnd1 adl5350 1234 8765 figure 58. reference schematic 1. tune lo buffer supply inductor for lowest supply current. to start this procedure, it is necessary to provide an initial guess. table 8 can be used as a starting point. it is not necessary to terminate or populate the rf and if port networks to complete this first step. the rfif pins can be left open while tuning the lo buffer networks. table 8. recommended lo bias inductor desired lo frequency recommended lo bias inductor (l4) 1 380 mhz 68 nh 750 mhz 24 nh 1000 mhz 18 nh 1750 mhz 3.8 nh 2000 mhz 2.1 nh 1 the bias inductor should have a self-resonant frequency greater than the intended frequency of operation. to test the supply current consumption, power up the device and apply the desired lo signal. next, attempt to increase and decrease the lo frequency. if the current consumption increases as the lo frequency is decreased, then increase the value of l4. if the current consumption decreases as the lo frequency also decreases, then decrease the value of l4. after determining the optimum inductor value, the current consumption should be minimized at the desired lo frequency.
preliminary technical data adl5350 prc | page 19 of 24 2. tune the lo port input network for optimum return loss. typically, a bandpass network is used to pass the lo signal to the loin pin. it is desirable to block high frequency harmonics of the lo from the mixer core. lo harmonics cause higher rf frequency images to be down converted to the desired if frequency, and result in a sensitivity degradation. if the intended lo source has poor harmonic distortion and spectral purity, it may be necessary to employ a higher order bandpass filter network. figure 58 illustrates a simple l-c bandpass filter used to pass the fundamental frequency of the lo source. capacitor c3 is a simple dc block, while the series-inductor (l3), along with the gate-to-source capacitance of the buffer amplifier, form a low-pass network. the native gate input of the lo buffer (fet) presents a rather high input impedance alone. the gate bias is generated internally using feedback that can result in a positive return loss at the intended lo frequency. if a better than ?10 db return loss is desired, it may be necessary to add shunt resistor to ground before the coupling capacitor (c3) to present a lower loading impedance to the lo source . 3. design the rf and if filter networks. figure 58 depicts simple lc tank filter networks for the if and rf port interfaces. the rf port lc network is designed to pass the rf input signal. the series lc tank has a resonant frequency at 1/(2 lc). at resonance, the series reactances cancel, which presents a series short to the rf signal. a parallel lc tank is used on the if port to reject the rf and lo signals. at resonance, the parallel lc tank presents an open circuit. it is necessary to accommodate for the board parasitics, finite q, and self-resonant frequencies of the lc components when designing the rf, if, and lo filter networks. table 9 provides suggested values for initial prototyping. table 9. suggested rf, if, and lo filter networks for low-side lo injection rf frequency l1 1 c1 l2 c2 l3 c3 450 mhz 8.3 nh 10 pf 10 nh 10 pf 10 nh 100 pf 850 mhz 6.8 nh 4.7 pf 4.7 nh 5.6 pf 8.2 nh 100 pf 1950 mhz 1.7 nh 1.5 pf 1.7 nh 1.2 pf 3.5 nh 100 pf 2400 mhz 0.67 nh 1 pf 1.5 nh 0.7pf 3.0 nh 100 pf 1 the inductor should have a self-resonant frequency greater than th e intended frequency of operation. l1 should be a high q indu ctor for optimum nf performance.
adl5350 preliminary technical data rev. prc | page 20 of 24 applications low frequency applications using an external capacitor from the gc pin to vpos makes it possible to operate the adl5350 at frequencies below 100 mhz. this capacitor is required because the internal capacitor between the lo buffer and the gate of the device is only 4 pf. this capacitance combined with the gate resistance causes a high-pass filter corner of 80 mhz. 05615-060 rf gnd gnd lo lo input vpos v s gc rf input or output if if output or input figure 59. block diagram this high-pass filter corner decreases the lo energy that is reaching the mixer core. using a 47 pf capacitor between vpos and gc reduces this corner frequency to 7 mhz. the circuit in figure 60 is designed for a rf of 70 mhz and an if of 10.7 mhz. the lo is at 59.3 mhz (low side lo). the series resonant circuit is designed for 70 mhz and the parallel resonant circuit is designed for 65 mhz. 05615-061 rf/if gnd2 loin gnd1 rf/if gc vpos 270nh 10nf 4.7f 56pf 47pf 100nh 10nf 47pf lo 10nf 100nh rf 3 v if gnd1 adl5350 1234 8765 a ll inductors a re 0603cs series from coilcraft + figure 60. 70 mhz to 10.7 mhz down-conversion schematic
preliminary technical data adl5350 prc | page 21 of 24 70 mhz receive performance v s = 3 v, t a = 25c, lo power = 4 dbm, re: 50 , unless otherwise noted. table 10. parameter unit rf frequency 60 mhz lo frequency 59.3 mhz if frequency 10.7 mhz conversion loss 6.7 db ssb noise figure 6.7 db input third-order intercept 27.3 dbm supply voltage 3 v supply current 18 ma table 11 shows the spur performance for rf = 70 mhz and lo = 59.3 mhz; rfin = ?5 dbm, loin=4 dbm; all values in dbc referenced to rfin. note that higher order spurious components falling in-band do become an issue as the bandwidth of the desired signal increases. therefore, while operation at if frequencies as low as 10 mhz is possible, the bandwidth of this signal needs to be taken into consideration. . table 11. n f rf ? m f lo -mixer spurious products m 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 0.0 ?6.8 ?30.5 ?23.3 ?30.5 ?28.9 ?34.9 ?41.1 ?45.7 ?37.8 ?39.7 ?42.3 ?37.5 ?48.8 ?40.1 ?39.1 ?37.4 1.0 ?15.3 ?6.8 ?18.1 ?37.3 ?19.8 ?22.6 ?41.5 ?24.2 ?26.9 ?42.4 ?27.7 ?30.1 ?43.4 ?30.2 ?32.9 ?44.3 2.0 ?51.5 ?66.0 ?57.8 ?57.4 ?63.1 ?57.8 ?55.6 ?59.2 ?56.3 ?55.7 ?61.3 ?57.1 ?55.7 ?58.3 ?56.8 ?57.6 3.0 ?71.4 ?78.8 ?73.1 ?75.1 ?80.6 ?81.8 ?78.3 ?78.2 ?72.3 ?82.3 ?77.7 ?82.4 ?76.3 ?73.3 ?74.3 ?79.2 4.0 ?82.9 ?78.6 ?81.0 ?84.2 ?79.7 ?77.5 ?76.6 ?79.0 ?74.9 ?75.0 ?75.8 ?76.3 ?89.2 ?76.7 ?87.9 ?76.1 5.0 ?76.2 ?82.9 ?78.6 ?75.4 ?78.7 ?84.9 ?77.6 ?79.2 ?84.5 ?85.0 ?75.9 ?81.3 ?74.9 ?98.6 ?73.6 ?90.4 6.0 ?88.6 ?74.6 ?79.1 ?80.2 ?77.1 ?76.1 ?85.8 ?76.2 ?81.2 ?82.9 ?89.7 ?75.4 ?82.9 ?85.4 ?78.1 ?75.9 n 7.0 ?90.6 ?76.7 ?79.9 ?80.6 ?81.0 ?83.4 ?73.1 ?76.8 ?77.9 ?84.6 ?80.0 ?78.4 ?73.2 ?75.2 ?79.3 ?90.9 8.0 ?81.8 ?80.4 ?84.6 ?84.9 ?79.5 ?83.1 ?80.1 ?78.6 ?89.9 ?78.7 ?75.3 ?77.0 ?81.6 ?86.3 ?85.0 ?77.1 9.0 ?90.2 ?78.3 ?80.2 ?71.9 ?73.9 ?85.8 ?82.2 ?86.6 ?80.2 ?78.7 ?79.1 ?71.2 ?78.8 ?76.0 ?84.5 ?81.8 10.0 ?78.2 ?82.1 ?80.3 ?73.5 ?86.6 ?86.1 ?81.0 ?86.0 ?78.2 ?86.2 ?87.1 ?83.7 ?79.8 ?75.0 ?83.8 ?82.4 11.0 ?77.6 ?85.8 ?78.4 ?85.1 ?86.6 ?80.1 ?79.4 ?78.8 ?69.3 ?82.8 ?81.6 ?94.2 ?81.7 ?80.5 ?84.1 ?77.2 12.0 ?89.4 ?90.8 ?80.8 ?71.7 ?73.4 ?75.5 ?82.2 ?76.8 ?72.1 ?78.0 ?76.3 ?84.9 ?85.6 ?78.7 ?71.8 ?85.1 13.0 ?80.0 ?82.5 ?79.6 ?82.0 ?78.9 ?78.5 ?73.4 ?80.4 ?84.9 ?81.5 ?79.4 ?79.1 ?76.1 ?82.8 ?77.8 ?71.7 14.0 ?86.3 ?85.6 ?89.2 ?85.6 ?82.7 ?74.4 ?88.1 ?77.6 ?74.4 ?79.0 ?85.4 ?89.1 ?88.4 ?77.2 ?81.1 ?80.0 15.0 ?84.4 ?81.9 ?81.1 ?87.9 ?77.7 ?83.3 ?78.4 ?81.9 ?90.0 ?73.3 ?84.6 ?77.8 ?81.7 ?81.2 ?93.2 ?71.4
adl5350 preliminary technical data rev. prc | page 22 of 24 high frequency applications the adl5350 can be used at extended frequencies with some careful attention to board and component parasitics. figure 61 is an example of a 2.3 ghz to 2.5 ghz down-conversion using a low-side lo. the performance of this circuit is depicted in figure 62. note that the inductor and capacitor values are very small, especially for the rf and if ports. above 2.5 ghz, it is necessary to consider alternate solutions to avoid unreasonably small inductor and capacitor values. 0 5615-062 rf/if gnd2 loin gnd1 rf/if gc vpos 2.1nh 100pf 4.7f 0.7pf 1.5nh 1nf 1pf 0.67nh rf 3 v if gnd1 adl5350 1234 8765 3.0nh lo 100pf a ll inductors a re 0302cs series from coilcraft + figure 61. 2.3 ghz to 2.5 ghz down-conversion schematic 30 25 20 15 10 5 0 ?5 ?10 12 ?9 ?6 ?3 0 3 6 9 ?12 2200 2250 2300 2350 2400 2450 2500 gain ip1db iip3 05615-063 iip3, ip1db (dbm) conversion gain (db) rf frequency (mhz) figure 62. measured performance for circuit in figure 61 using low-side lo injection and 374 mhz if the typical networks used for cellular applications below 2.5 ghz utilize band-select and band-reject networks on the rf and if ports. at higher rf frequencies, these networks are not easily realized using lumped element components (discrete ls and cs). as a result, it is necessary to consider alternate filter network topologies to allow more reasonable values of inductors and capacitors. figure 63 depicts a cross-over filter network approach to provide isolation between the rf and if ports for a down- converting application. the cross-over network essentially provides a high-pass filter to allow the rf signal to pass to the rf/if node (pin 1 and pin 8), while presenting a low-pass filter, (which is actually band-pass when considering the dc blocking capacitor, c ac ). this allows the difference component (f rf C f lo ) to be passed to the desired if load. 05615-064 rf/if gnd2 loin gnd1 rf/if gc vpos 3.8nh 100pf c2 1.8pf l2 1.5nh c ac 100pf c1 1.2pf lo 100pf 3.5nh rf 3 v if gnd1 adl5350 1234 8765 l1 3.5nh 4.7f + a ll inductors a re 0302cs s eries from c oilcraft figure 63. 3.3 ghz to 3.8 ghz down-conversion schematic when designing the rf and if port networks, it is important to remember that the networks share a common node (the rf/if pins). in addition, the opposing network presents some loading impedance to the target network being designed. classic audio crossover filter design techniques can be applied to help derive component values. however, some caution must be applied when selecting component values. at high rf frequencies, the board parasitics may significantly influence the final optimum inductor and capacitor component selections. some empirical testing may be necessary to optimize the rf and if port filter networks. the performance of the circuit depicted in figure 63 is provided in figure 64. 30 28 26 24 22 20 18 16 14 ? 2 iip3 ?10 ?9 ?8 ?7 ?6 ?5 ?4 ?3 3300 3350 3400 3450 3500 3550 3600 3650 3700 3750 3800 05615-065 ip1db, iip3 (dbm) conversion gain (db) rf frequency (mhz) ip1db gain figure 64. measured performance for circuit in figure 63
preliminary technical data adl5350 rev. prc | page 23 of 24 evaluation board an evaluation board is available for the adl5350. the evaluation board has two halves: a low band designated as board a, and a high band board designated as board b. the schematic for the evaluation board is presented in figure 65. 05615-059 rf/if gnd2 loin gnd1 rf/if gc vpos l4-b c2-b l2-b c6-b c1-b lo-b c3-b l3-b l1-b v pos-b if-b gnd1 adl5350 u1-b 1234 8765 c4-b c5-b rf-b + rf/if gnd2 loin gnd1 rf/if gc vpos l4-a c2-a l2-a c6-a c1-a lo-a c3-a l3-a l1-a v pos- a if-a gnd1 adl5350 u1-a 1234 8765 c4-a c5-a rf-a + figure 65. evaluation board table 12. evaluation board configuration options component function default conditions c4-a, c4-b, c5-a, c5-b supply decoupling. c4-a and c4-b provide local bypassing of the supply. c5-a and c5-b are used to filter the ripple of a noisy supply line. these are not always necessary. c4-a = c4-b = 100 pf c5-a = c5-b = 4.7 f l1-a, l1-b, c1-a, c1-b rf input network. designed to provide series resonance at the intended rf frequency. l1-a = 6.8 nh (0603cs from coilcraft) l1-b = 1.7 nh (0302cs from coilcraft) c1-a = 4.7 pf, c1-b = 1.5 pf l2-a, l2-b, c2-a, c2-b, c6-a, c6-b if output network. designed to provide parallel resonance at the geometric mean of the rf and lo frequencies. l2-a = 4.7 nh (0603cs from coilcraft) l2-b = 1.7 nh (0302cs from coilcraft) c2-a = 5.6 pf, c2-b = 1.2 pf c6-a = c6-b = 1 nf l3-a, l3-b, c3-a, c3-b lo input network. designed to block dc and optimize lo voltage swing at loin. l3-a = 8.2 nh (0603cs from coilcraft) l3-b = 3.5 nh (0302cs from coilcraft) c3-a = c3-b = 100 pf l4-a, l4-b lo buffer amp choke. provides bias and ac loading impedance to lo buffer amp. l4-a = 24 nh (0603cs from coilcraft) l4-b = 3.8 nh (0302cs from coilcraft)
adl5350 preliminary technical data rev. prc | page 24 of 24 outline dimensions 0.30 0.23 0.18 seating plane 0.20 ref 0.80 max 0.65 typ 1.00 0.85 0.80 1.89 1.74 1.59 0.50 bsc 0.60 0.45 0.30 0.55 0.40 0.30 0.15 0.10 0.05 0.25 0.20 0.15 bottom view * 4 1 58 3.25 3.00 2.75 1.95 1.75 1.55 2.95 2.75 2.55 pin 1 indicato r 2.25 2.00 1.75 top view 0.05 max 0.02 nom 12 max exposed pad figure 66. 8-lead lead frame chip scale package [lfcsp_vd] 2 mm 3 mm body, very thin, dual lead (cp-8-1) dimensions shown in millimeters ordering guide models temperature range package description package option branding ordering quantity adl5350acpz-r2 1 ?40c to +85c 8-lead lead frame chip scale package [lfcsp_vd] cp-8-1 q7 250, reel adl5350acpz-r7 1 ?40c to +85c 8-lead lead frame chip scale package [lfcsp_vd] cp-8-1 q7 3000, reel adl5350acpz-wp 1 ?40c to +85c 8-lead lead frame chip scale package [lfcsp_vd] cp-8-1 q7 50, waffle pack ADL5350-EVAL evaluation board 1 1 z = pb-free part. ? 2005 analog devices, inc. all rights reserved. trademarks and registered trademarks are the prop erty of their respective owners. pr05615-0-12/05(prc)


▲Up To Search▲   

 
Price & Availability of ADL5350-EVAL

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X